Regulation of Tissue Engineered Products by the FDA
Pre-clinical trials, Safety, Efficacy, Clinical end-points

Robert T. McNally, Ph.D.
CEO – Cell Dynamics, LLC
• **Pre-clinical Trials**
 - Normally, animal trials designed to mimic the human condition the tissue engineered product is designed to correct

• **Safety**
 - **DO NO HARM**
 - Toxicology - Non-clinical safety study
 - Sometimes determined in pre-clinical trial
 - Definitely part of human (clinical) trials
GLOSSARY OF TERMS

• **Efficacy**
 — Does it function for the intended purpose?
 — Does it function better than current clinical products?

• **Clinical End-points**
 — What is measurable to supply a statistically relevant observation to support safety and/or efficacy?
Bioengineering Approach to Product Development

- Design Idea
- Prototype
- Animal Model
- Functional Product
- Human Clinical PHASE I, II, III
- FDA Submission
- IDE & IND
- Final FDA Submission
- Scale up Production
- Product Release PHASE IV
- Next model or design
Design Idea

- R&D
- Do not harm
- Improvement over current products
- Can it be manufactured?
- End user friendly
- Will someone pay?
- FDA approvable?
Prototype \leftrightarrow Animal

- Toxicology
- Safety & efficacy
- Failure mode analysis
- Small vs. large animal
- Determine method of use
cGmp

Control of:
- Facility
- Equipment (validation)
- Personnel
- Raw materials (audit)
- Production
- Storage
- Documents
- Final Product
Human Clinicals

- Safety & efficacy
- Determine endpoints
- Clinical protocols
Human Clinicals
Phase I, II, III

• Gather Data

• Final FDA Submission

• Scale up production
Product Release
Phase IV

- Monitor for failure
- Determine failure modes
- Complications
- Complaints
- Generate performance statistics
- Suggest next generation product
TISSUE ENGINEERING
CONSTRUCT

Vascular Graft, Skin Sub, Valve Whatever?

Device
Prosthetic
IDE

Biologic
Likely Choice
IND

Drug
Not Likely
IND
REGULATORY APPROVAL OF NEW DRUGS/BIOLOGICS

- Pharmacology Studies
- Pharmacokinetic Studies
- Initial Toxicity Studies
- Initial Phase I Protocol
- Clinical Trials
 - Phase I, II, III
- Chronic Toxicity Studies
 - Carcinogenicity
 - Special Toxicity Studies
 - Drug Metabolism
- Phase IV Studies
- Marketing
TISSUE ENGINEERED PRODUCTS AND THE FDA

- Tissues Regulated by the FDA
- Human Tissue as a Biologic
- 21 CFR / 1270 / 1271 Part C/210/211/820
- Proposed Legislation 1271
- FDA Proposed Regulatory Guidelines
 — Combinational Products
REGULATED TISSUES AND CELLS

• Blood
• Human Breast Milk
• Reproductive Cells
• Bone Marrow
• Human Heart Valves
• Bone, Cornea, Vessels, Connective Tissue
• ?? Engineered and Cultured Tissues ??
FDA NEW APPROACH
February 28, 1997

- “Proposed Approach to the Regulation of Cellular and Tissue-based Products”
 - Tiered system of regulation
 - Provides firm structure to regulations
 - Reduces restrictions on new technology development
 - Technology representing higher level of risk concerns receive greater level of review
TIERED SYSTEM OF REGULATION

• Areas of Concern
 — Transmission of Communicable Disease
 — Processing
 • Minimal vs. more-than-minimal
 — Clinical Safety
 • Non-homologous use of cells/tissues
 • Non-tissue components in product
 • Metabolic function of cells/tissues
 — Promotion and Labeling
 — Facility / Product Registration
TISSUE/CELL PROCESSING

• Minimal Manipulation vs. More-than-Minimal Manipulation
 — Alteration of biologic or functional characteristics of tissue or cell

• Less than Minimal Manipulation
 — Follow “GTPs” with no S&E Submission

• More-than-Minimal Manipulation
 — Follow GMPs with controls to address S&E concerns

*Safety and Efficacy
CLINICAL SAFETY
IND or IDE for Safety/Effectiveness Data, if...

• More-than-minimal Manipulation
 — Alteration of biologic and functional character

• Non-homologous Use
 — Does not replace an analogous structural function

• Combination with a Non-tissue Component

• Tissue/Cell Used for Metabolic Purpose
 — Except reproductive or autologous tissue
STEPS IN PRODUCT DEVELOPMENT

- Concept
 - Vascular Graft
- Design Review (Testing/Efficacy/End-points)
 - Xenograft Collagen & Mammalian Cells
- Prototype (Design Lock)
 - 5mm x 10cm
- *In-vitro* Feasibility
 - Hemodynamics
- *In-vivo* Feasibility
 - 3 Animals Carotid
PRECLINICAL TESTING

• Selection of Animal Species
 — Rat
 • Large #
 • M&F
• Mode of Delivery
 — Dog
 • More likely to mimic human delivery
• Immunogenicity - Probably a Big Issue with Tissue Engineering Constructs
 — Measurement of antibodies
STEPS IN PRODUCT DEVELOPMENT

- Analysis of Raw Materials/Supplies
 - Purity, Identity, Strength, Sterility, Stability
- CMC (Validation/Viral Assay Development)
 - ID By-products and Interaction of All Components
- Documentation Process
 - SOP/cGMP/GLP
- Toxicology
 - Acute, Subacute/Subchronic, Chronic
- Pre-clinical Testing (Animal Efficacy/Safety)
 - Define Human Protocol/End-points
PRODUCT DETAIL

• Product
 – List of all components
 – Manufacturing and packaging
 – Limits to identify, strength, quality, purity
 – Stability

• Labeling
 – Pharmacology and toxicology
 – Previous human experience
PRODUCT DETAIL

• CMC
 — Chemistry Manufacturing and Control
 — Assure proper identification of quality, purity, and strength of product
 — Product made from impure components, chemical structures which are toxic, and chemical instability
 — Poorly characterized cell bank
 — Starting with source of supply, is it consistent and work towards current product?
 — How is it made? Identity, strength, quality, purity
SAFETY PHARMACOLOGY

• Effects on Cardiovascular, Respiratory, Central Nervous System, Renal System, etc.
TOXICOKINETICS AND PHARMACOKINETICS (ADME)

- Absorption
- Distribution
 - Labeled studies
- Metabolism
 - Sophisticated detection method chromatographic
- Execution
- Immunotoxicity
- Reproduction performance
- Genotoxicity
- Carcinogenicity
- Local Tolerance
NON-CLINICAL SAFETY

• General Purpose is to Evaluate Negative Effects of Large Dosing a Product in Small Animal Models and to Help Determine the Limits to Safety of the Product (e.g., How Much Can be Used Before the Product Induces a Negative Effect?).

• Safety Pharmacology - Effect on Vital Function (e.g., CV, Central Nervous System, or Respiratory System).
GENERAL CONSIDERATIONS

<table>
<thead>
<tr>
<th>Duration of Human Exposure</th>
<th>Phase of Clinical Trial</th>
<th>Duration of Animal Toxicity Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3 Days</td>
<td>I, II, III, PLA</td>
<td>2 Species; 2 Weeks</td>
</tr>
<tr>
<td>Up to 2 Weeks</td>
<td>I</td>
<td>2 Species; 2 Weeks</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>2 Species, Up to 4 Weeks</td>
</tr>
<tr>
<td></td>
<td>III, PLA</td>
<td>2 Species; Up to 3 Months</td>
</tr>
<tr>
<td>Up to 3 Months</td>
<td>I, II</td>
<td>2 Species; 4 Weeks</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>2 Species; 3 Months</td>
</tr>
<tr>
<td></td>
<td>PLA</td>
<td>2 Species; Up to 6 Months</td>
</tr>
<tr>
<td>6 Months to Unlimited</td>
<td>I, II</td>
<td>2 Species; 3 Months</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>2 Species; 6 Months or Longer</td>
</tr>
<tr>
<td></td>
<td>PLA</td>
<td>2 Species; 12 Months (Non-rodent)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 Months (Rodent)</td>
</tr>
</tbody>
</table>
STEPS IN PRODUCT DEVELOPMENT

• Human Protocol
 – Phase I
 • Not Applicable for A/V Shunt
 – Phase II
 • Safety/Efficacy
 • 3 Sites x 10 Patients on Dialysis
 • Develop Statistics for Phase III
 – Phase III
 • Efficacy
 • 10 Sites x 30 Patients on Dialysis
CLINICAL TRIAL EXAMPLE

- **Vascular Graft A/V Shunt for Kidney Dialysis Versus PTFE**
 - **Safety (Do No Harm)**
 - Prions Test: Blood Test
 - Microbiology Test: Blood Test
 - No Aneurysm Test: Doppler
 - Occlusion Test: Doppler
 - **Efficacy (Functional Parameters)**
 - Flow Test: Doppler
 - # of Punctures Test: Measurement
 - **End-points (Label Claims)**
 - Immunogenic Test: Blood Test
 - Flow Test: Doppler
 - Patency Test: Doppler
 - Hematoma Test: Measurement
CLINICAL TRIAL EXAMPLE

- Skin Graft Versus Porcine Patch for Burn Patients with >50% Burn
 - Safety (Do No Harm)
 - Efficacy (Functional Parameters)
 - End-points (Label Claims)
GENERAL CONSIDERATIONS FOR HUMAN CLINICAL TRIALS

• **Phase I:** Healthy Volunteer (10-50 pts)
 – Single dose
 – Dose escalation
 – Repeated dose
Phase II: Small Scale
(3 Hospitals Doing 10 Procedures for the Indicated Condition)
—Objectives:

- Work on surgical technique
- Refine end-points
- Reassured about doing NO HARM (Safety)
- Helps define the statistical difference between the control group and experimental product to determine the number of patients required for Phase III
GENERAL CONSIDERATIONS FOR HUMAN CLINICAL TRIALS

- **Phase III**: Large Scale Statistically Relevant Studies
 (Typically 10 Sites Doing 20 or More Patients per Site)
STEPS IN PRODUCT DEVELOPMENT

• Product License Application/FDA Submission
• Approval (3-5 Years After Initial Concept)
• Post-Marketing Surveillance
DRUG DEVELOPMENT IN THE UNITED STATES

Average Time Required

- Discovery
 - Synthesis
 - Laboratory
 - Preclinical (Animal) Pharmacology
 - Toxicology
 - IND Filing
 - Clinical
 - IND Filing
 - Phase 1
 - Phase 2
 - Phase 3
 - Phase 3 (Cont.)
 - Phase 4
 - PLA Submission
 - PLA Approval
 - Manifested

3.5 years 6 years 2 years

(?)